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Abst rac t

This paper provides a Safety Checklist for usc during the analysis of software re-
quirements for spacecraft and other safety-critical, embedded systems, The checklist
specifically targets the two most common causes of safety-related software errors: (1)
inadequate interface requirements and (2) discrepancies between the documented re-
quirements and the requirements actually needed for correct functioning of the system.
Use of the checklist to enhance the software-recluirements  analysis is shown to reduce
the number of safety-related software errors.

I. Introduction

An earlier study of the causes of safety-related software errors found that those errors identi-
fied as potentially hazardous to a system tencl to be produced by clifferent error mechanisms
than non-safety-related software errors [15]. Safct y-related software errors found cluring the
integration and system testing of two spacecraft arose most commonly from: (1) misun-
derstandings of the software’s interfaces with the rest of the system, and (2) discrepancies
bet ween the documen ted requirements specifications and the recluirements  needed for correct
functioning of the system.

A software error is defined to be a software-related discrepancy between a computed,
observed, or measured value or condition ancl  the true, specified, or theoretically correct
value or condition [1], A software error is classified as safety-related if, during the standard
error-correction process, the systems safety analyst cletcrmines that the error represents
potentially significant or catastrophic failure effects.

This paper is part of an ongoing effort to improve system safety by directly targeting
the known causes of safety-related software errors  during the recluirements  phase. l’he  main
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result  of the paper is to proviclc  a Safety Checklist for the analysis of software requirements
that focuses specifically on interface rcquircmcnts  and robustness requirements,

Since system interface issues such as timing dependencies, storage capacities, noise char-
acteristics,  communication links, and expcctcc] operating environments are freclucnt sources
of safety-relatecl software interface errors, they need to be reflcctcd in the software require-
ments specification. Correctly specifying software/ systcm interfaces in complex, cmbeclclcd
systems with software distributed among various harc]warc  components, some of which may
bc as-yet uncleterminecl,  is difficult.

Similarly, many of the safety-related software CrYOrS involve inadequate soft~vare responses
to extreme conditions or extreme values. Anomalous harclware behavior, unal]ticipatecl
states, invalid data, signal saturation, ancl incorrect triggering of error-recovery responses
are robustness issues which cause errors. By inducting rccluirements  for robustness or what
Neumann calls “clefcnsivc  clcsign “ in the specifications, many safety-related errors call be
avoiclcd  [18].

Jaffe et al. present a set of criteria, clcfinccl  in terms of an abstract state machine, to
help find errors  in the software requirements specifications of process-control systems [1 1 ].
They pay particular attention to the behavioral properties of col~trol systems, making their
work an appropriate candidate for error reduction in safety-critical spacecraft systems.

Spacecraft involve ernbccldccl  software dist.ributccl  on several cliffcrent flight computers.
g’hc spacecraft’s software is safety-critical in that it monitors and controls components that
can be involved in hazardous system bclla,vior [14]. The possibility y of hazardous interactions
among the processes executing on clifferent  processors as well as the complexity of the timing
issues across the systcm interfaces demand a rigorous analysis of the recplircments.

‘J’his paper aclapts ancl extcncls  the criteria in [1 1 ] to tile spacecraft cloma.in.  ‘1’llc resulting
Safety Checklist is shown to be useful in reclucing safety-rclatecl software errors. lt appears to
be applicable to a variety of application clomains involving safety-critical, embedded software.

The Safety Checklist developed here, Unlilic the criteria presented in [11], is appropri-
ate for a software-development process that may not incluc]c  formal specification languages
or finite-state-rnachinc  modeling. !lle Safety Chcclilist described below thus is integrated
readily into a wide range of software development environments.

Two specific applications of the Safety Checklist are given in Section IV. These clenlon-
stratc  its success at reducing the number of safety-related errors clue to inadequate software
requirements regarding interfaces and robustness.

q’hc overall goal is to recluce safety-related software errors  in future systems. The method
is to focus during requirements analysis on those areas (software/system interfaces, failure
modes, timing, boundary conditions ancl values) which in the past have causccl  errors that
persisted until integration and system testing. The Safety Ch~clilist  has been clcvelopccl  as
a tool to aid in this requirements analysis.

II. Related Work

Gray and Thayer  [9] identify two key components of any software requirements nlcthodol-
ogy: (1) to aicl  in determining the software recluirements  and (2) to represent the software
rec{uirements specifications. The Worli described here is focused solely on the first of these
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two functions.
The paper describes a checklist by which developers can better identify and understand

the requirements necxled for embedded software to interact correctly with the systcm in all
circumstances. This tcchniquc  is consistent with a variety of representations of the software
requirements. Regardless of the specification Ianguagc or rnodcl chosen, all rcquircmcnt
methodologies suitable for safety-critical embcclcled  software must include some way of con-
fronting the issues identified in the Safety Chcclilist cluring the recluirernents phase. g’his
work is thus integral to any effort to iclcntify ancl eliminate software errors in safety-critical
Systems.

The Safety Checklist described here can be integrated into the recluiremcnts-ana]  ysis
process as currently practiced for many application clomains  [4]. ‘] ’he checklist format is
one that is widely used ancl  with which clevelopms  arc comfortable. Formal inspections of
requirement specifications, for example, commonly usc checklists.

‘1’hc utility of the formal inspection of rcquircmcnts  documents is wiclcly  documented. A
93 of thcnl  inspections of software requirc-stucly by Kelly et al., of 203 formal inspection s., -

mcnts  documents, reports that a significantly higher density of defects were founcl  during
recpircments  inspections than in later phases. [1 3]. Work by L)oolan describes the savings
and cluality benefits resulting from the formal inspections of the requirement specifications
of a large (2 million lines of code) package of seismic-processing software [5].

The Safety Checklist presented 1)C1OW is compatible with the software-requirements check-
list used during formal inspections at Jet Propulsion laboratory [6]. Overlap with the fornlal-
inspcction  checklists has been eliminated to increase the usefulness of the Safety Checklist.
The focus of the Safety Checklist is narrower than the formal-inspection checklists, since it
con cent rat es on working backwards from common sa.fet y-rela t ed software errors discovered
cluring system testing to their prevention in the recluircmcnts phase. The Safety Checklist is
intencled to extend the requirements analysis in directions that may enhance systcm safety,
not to replace the current checklists, which are broaclcr  ancl more comprehensive in scope.

A wide variety of powerful formalisms exists to moclcl and represent the specifications
ancl behavior of systems [21]. In adc]ition,  much work has been clone in recent years on formal
specification languages. Timing constraints, which are a major source of software interface
errors, often can be accurately modclccl  ancl interactively Chec.lieCl [2, S, 10, 17, 1 9].

l’he  capability to verify that the software recluiremcnts for a system satisfy the safety
constraints on that system is a focus of much recent work [7, 12, 14] Similarly, the capability
to analyze specifications by proving theorems regarding them allows verification of the safety-
critical functions of a system [3, 20].

The Safety Checklist provicles  a possible bridge mechanism from manual or CASIt anal-
ysis of requirements to the formal specification and verification of safety -relatecl software
requirements. As formulated here, the checklist can provide a first step towards specifying
safety constraints formally. q’hc checklist’s formal basis, as defined by Jaffe et al., allows
the checklist to be written in terms of mathematical predicates in a variety of formal speci-
fication languages. It can then be tested against a formal specification of the requirements.
The Safety Checklist thus can serve as a link between current informal practices ancl future,
formal requirements analyses for safety-critical domains.
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III. The Safety Checklist

The approach in [11] is to bui]cl a formal, finite-state moclel of the rcquircmcnt  specifications
and then to ana.lyzc this moclcl to ensure that its properties match the dcsirccl  behavior (e.g.,
clctcrminisrn).  They accomplish this by stating criteria (usually formal preclicates)  that must
1101cI in the model.

‘J’he following checklist is a translation of the criteria into an informal, natural-language
format. Sometimes the translation is extracted from the text that accompanies the formal
clcscription in [11]. Other times the checlilist  itcm is a rewording of a mathematical prcclicatc
in a less-technical vocabulary. Though this rewording inevitably involves some loss of rigor
ancl information, thmc  are readily rccapturccl if the ncecl arises by rcfcrcnce  to the original
article.

Formatting the requirements-analysis concmns  as a checklist avoicls the neecl  previously to
have built a model of the recluiremcmts. ‘J’hc ~heclilist  thus malics the interface ant] robustness
issues (shown in Sect. IV to bc powerful iclen tificrs of future safet y-rclatccl  software errors)
available to a wicler range of software-clcvclopmcnt environments. II] some applications the
checklist may complement more formal approaches to the rccluiremcnts  analysis.

‘J’he work in [11] models only the controller in a process-control systcm.  The adaptation
of the criteria to spacecraft involves the consiclmation of additional features. Specifically, the
prevalence of concurrent proccsscs (often on clistributecl  controllers), of redundant resources,
of external command signals as inputs to the controller, ancl  of state changes not visible in the
fccclback  information are all features that complicate the spacecraft’s recluiremcnts. l’hcse
features appear to be typical of many complex, embcclclcd  systems with timing constraints
ancl safety-critical functions. !l’he worcling  of the items in the Safety Checklist tries to take
the associated interface ancl robustnms  issues into account  for such systems.

Interfaces

1. Is the software’s response to out-o~-rwvgc  values specified for every input?

2. Is the software’s response to not mcciving  an c~pcctcd  input specifiecl?  (That is, are
timeouts providccl?) Dots the software specify the length of the timeout, when to start
counting  the timeout, ancl the latency  of the timeout (the point past which the receipt
of new inputs cannot change the output Lwsult,  even if they arrive before tile actual
output)?

3. If input arrives when it shouldn’t, is a response spccifiecl?

4. On a. given input,  will the software always follow the same path through the cocle (that
is, is the software’s behavior delerminisiic)?

5. Is each input bounded in time? That is, cloes the specification include the earliest time
at which the input will be acccptec] ancl  the latest time at which the data will bc
considered valid (to avoid rnaliing  control clecisions basecl on obsolete data)?
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6.

7.

s.

9.

10.

11.

1~.

13.

14.

15,

16!

Is a minimum ancl  maximum arrival  rate spccificd  for each input (for example, a
capacity limit on interrupts signaling an input)? For each communication path? Are
checks performed in the software to avoid signal saturation?

If interrupts are masked or clisabled,  can events he ~ost?

Can any output bc proclucccl faster than it can be usccl (a. bsorbecl) by the interfacing
module? Is overload behavior spccifled?

Is all data output to the buses from the sensors used by the software? If not, it is likely
that some required function has hccn omitted from the specification.

Can input that is received bejom startup,  while ofjline, or after shutdown influence
the software’s startup behavior? For example, arc the values of any counters, timers,
or signals retained in software or hardware during shutdown? If so, is the earliest or
most- reccn t value ret ainccl ?

Robustness

In cases where performance degradation is the chosen error response, is the degradation
prcdictab~c  (for example, lower accuracy, longer response time)?

Arc there suficient  delays incorporated into the error-recovery responses, e.g., to avoid
returning to the normal state too cluickly?

Are jeedback loops (including echoes) spccificcl,  where appropriate, to compare the
actual effects of outputs on the system with the prcdictccl  effects”?

Are all mocles and moclulcs  of the specified software reachable (used in some path
through the code)? If not, the specification may include superfluous items.

If a hazards analysis has been clone, C1OCS every path from a hazardous state (a failure-
modc)  lead to a low-risk state?

Arc the inputs identified which, ij not rcccivcd (for example, CIUC to sensor failure), can
lead to a hazardous state or can prevent recovery (single-point failures)?

IV. Results

Two applications of the Safety Chccldist are dcscribcd below. ‘i’he first application looks at
the safet y-relatecl software errors that were actual] y founcl on two spacecraft ancl evaluates
whether use of the checklist during rccluircmcnts analysis COUIC1 have forestalled those errors.
The second application uses the Safety Checklist to analyze part of a requirements documcn t
for safety-critical software.
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A. Targeting Safety-Related Errors

The efficacy of the Safety Checklist first is ana.lyzccl  by examining 192 safety -relatecl software
errors clocumcntecl  during integration and system testing of two spacecraft, Voyager and
Galileo. Each of the 192 errors is classified according to which itcm, if any, in the Safety
Checklist addresses the issue causing the error. Table 1 reports the results (SCC Appcnclix
for tables).

Of the 192 errors, 149 of thcm have their causes aclclrcssecl  by the chcclclist.  This sug-
gests that the checklist cloes, in fact, “ask the right clucstions.  ” The usefulness of the Safety
Checklist lies in its use as a prompter for better recognition of recluirements. Asking the
right questions during  the rccluirements-analy  sis phase clearly is not sufllcient to prcclucle
the introduction of safety-related software errors into the systcm.  However, since misunders-
tanding  of the interface recluircments and lack of cletailecl  recluirements  for robustness are
the primary causes of errors, asking the right questions seems to be a necessary condition
for avoiding safety-related software errors in complex systems.

Tab]c 1 shows that the issue most frcclucnt]y  involvccl in safety-related software errors
is itcm 15, “noes every path from a hazardous state (a failure nwclc) lead to a low-risk
state?” The prevalence of this issue reflects the fact that many of the safety-relatccl software
errors (20910 on Galileo) involved the onboard  autonomous error-recovery software, Some of
the required error-recovery responses incorrectly included or omittecl  actions that allowccl
hazardous states to be enterecl or rc-entered. Examples of such actions arc turning off gyros,
switching to backup memory, or clisabling  certain software processes in a particular lrlodc.
The additional analysis nccclcd during the rec]uirements phase to answer “No” to itcm 15 of
the checklist might have precluded some of these errors.

The second most common issue producing safety-relatecl software errors is item 12, “Are
there sufficient delays incorporated into the the error-rccovcry responses, e.g., to avoid re-
turning to the normal state too cluickly?” Failure to rc:cognize timing constraints such as the
time required to complete recovery activity (e.g., to point the sensor at the sun), the clelay
required to avoid transient values (e.g., power transients or warm-up delays), or the correct
persistence limit at which to trigger a response are common recluimments  inaclecluacim  that
cause subsequent interface errors [16].

Both the third and fourth most common errors  queried by the checklist involve the arrival
of input. The third most common error’-proclucing  issue is itcm 3, “If input arrives when it
shouldn  ‘t, is a response specified?” This issue causes safety- relatccl software errors  when
essential input is ignored. Often this involves subt]c timing issues across the software/systenl
interfaces (e.g., commands arriving before a process is in the correct mode to receive tllcm,
unexpected duplicate commancls  that are mishandlccl,  or unforeseen race conditions),

~’he fourth most common issue is item 1, ‘{ls the software’s response to out-of-range
values specified for every input?” This becomes a safety issue when error responses are
erroneously triggered by incorrectly defined ranges or thresho]cls. Additionally, the lack of
software requirements to hand]c large errors (c,g., large pitch clisturbances,  unexpected spin
rates) caused several software errors on each spacecraft.

A relatecl  robustness issue is the fifth most common error, item 8, “Can any output
bc produced faster than it can be used by the interfacing moclule?” This item, together
with item 6 (arrival rates), checks for erroneous assumptions regarding the possibility of,
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and appropriate response Lo, data. overflow, signal saturation, a.ncl duplicate commands. IIy
including rccjuircments  for overflow protection and out-of-range checks in the specifications,
the subsequent clcsign  is more likely to bc robust with regard to boundary conditions ancl
values.

in all, clcvcn of the sixteen items on the Safety Checklist procluccd  safety-rclatccl software
errors, Those items not cited arc either adcquatc]y  handlccl  during  tile clevclopment  process
with other rncthods (c.g,, “1s all clata usccl?”  is chcckccl by various means) or have not been
clocumcntccl  as a problcm  with these particular systems (e.g., “Is the software’s behavior
clctcrministic?”).

g’he Safety Checklist appears to bc useful for targeting the causes of safety-related soft.-
warc  errors. Of the safety-related software errors  on the two spacecraft, 7770 have their causes
aclclrcssecl  by the Safety Checklist. The goal is to clecrcasc the number of safety -relatccl soft-
~$,arc  errors  foullcl  during testillg  of futllrc  systems })y en]~ancing  the requirements-analysis

process through use of the clleck]ist.

B. Analyzing Software Requirements

11’hc Safety Checklist also was usccl  to analyze part of a clraft version of a Software Rc-
quircrncnts  Document for a spacecraft currently being clcvclopccl. The portion chosen for
analysis was the requirements specifications for data collection by the remote (clistributccl)
cnginccring  subsystems (e.g., power, propulsion, science and radio  instruments).

‘1’his portion of the software specifications was chosen because each mmotc  subsystem has
many interfaces (both perioclic  ant] apcrioclic)  with other subsystems ancl because the safety -
critical, error-recovery processes clepcncl on the results of the clata collection. l’hc purpose
of applying the Safety Checklist to these specifications ]vas to evaluate the uscfu]ncss  ancl
ea.sc-of-use of the checklist, not the correctness or completeness of what Ivas proviclccl  as only
a prclimi nary requircmen  ts cl.ocumen t.

The clata collection functions as follows. Each remote engineering subsystem receives
various inputs over a sharecl  bus from the central control computer as WC1l  as from other
subsystems, performs certain actions in response to these inputs, ancl places variolls  outputs
(primarily engineering data) on a bus. Engineering clata is gathcrccl by each remote engi-
neering  subsystem and stored in its BUS Interface LJnit)s memory until the data is packagecl
and output on the bus to the central control processor. Some of the data also is cxtractccl
and sent to other subsystems. In aclclition, data recluirccl  by the error-recovery processes are
extracted and output separately.

l’able 2 (see Appcnclix) S11OWS the results of applying the Safety Checklist to the software
requirements specifications for the remote engineering clata collection. Seven of the sixteen
items in the chcck]ist are acldressccl in the preliminary software recluiremcnts  document.
Three of the sixteen items arc explicitly deferrecl  (since error-recovery responses and interrupt
behavior are still being clcfined).  The remaining six of the sixteen items prompt additional
questions involving the analysis of the requirements.

The six items prompting additional recluircments analysis do not necessarily neecl  further
specification in the document. Instead, they raise cluestions  about possibly vulnerable areas
(’(what if’s”) and possibly hazarc]ous  circumstances. The questions raised by the checklist
are uscfu] in focusing the recluirements-analy  sis process on the interface and robustness issues



that have been shown to cause safety -rclatecl softwarecrrors  in other complex, embeclclecl
systems.

I’or example, inaccorclance  with thechccklist,  thcrcis  arequiremcnt  specificd  for data
freshness. IIowevcr,  thetinlestanlp  in thchcaclcrof  therclevant  clata item recorcls only the
current time, making it uncertain whether obsolete clata coulcl  be identifiecl,  The concern
is not at this point with how the obsolete clata could bc identiflccl,  but with whether a
requirement to iclcntify  obsolete data is in conflict with other requirements regarding header
information, The checklist also allowccl iclcntiflcation  of possible race conditions, of possible
starvation of low-priority data transfers, ancl  of inputs which if not rcccivccl  might result  in
hazardous states (e.g., notification that error-recovery is ullclcrway).

Two extensions to the checklist were suggested by the application of the Safety C!hccklist
to the software requirements specification.

1. J!)aia consistency When multiple copies of the same clata items are kept, the possibil-
ity exists that the copies may have different values at any point in time, This inconsist.cncy
can occur through asynchronous update or through data. corruption (e.g., as clata is trans-
ferred across the bus or during a power-on reset response). ‘1’his issue has significant safety
consequences since error  recovery often involves the management of redundant resources.
This leads to the following extension to the Safety Checklist:
“Am checks  jor consistent data perjormd  before co Ittrol decisions are made based on thcii.
data?”

2. Generic structures. An important aspect of clcfensive clesign  is that, as much as pos-
sible, moclules  ancl data objects should bc generic, si]nilar in format a.ncl in U S C. Special
cases and exceptions increase the number of states ancl the opportunities for clesign  errors,
especially c]uring changes. In particular, restricting the number of possible hazardous states
makes the validation of safety constraints more feasible. This leacls to the following additi-
onal item for the checklist:
“Are generic structures used whenever appropriai  e to restrict. the number of possible haz-
ardous modes and states?”

V. Conclusion

The Safety Checklist has been shown to be useful in analyzing software recluircments,  particu-
larly with regard  to interfaces and robustness. Dy targeting those features which have proven
to bc the most common causes of safety-rclatccl software errors, the chccl;list  contributes to
a safer system. It aicls in analyzing failure modes, in uncovering hiclden  assumptions ancl
misunderstandings, and in identifying potential areas of vulnerability,

The Safety Checklist focuses extra attention on historically troublesome aspects of safety-
critical, embedded software (timing depcnclcncies,  triggers for error-recovery responses, the
handling of overload and saturation, the use of obsolete clata for control decisions) without
causing overspecification  of well-unclcrstoocl  or low-risk requirements. ‘l’he checlilist  thus
allows the depth of the recluirements analysis to be ta.ilorecl  to the level of risk (technical or
historical) associated with a component,

Because the checklist emphasizes requirements for software/systern interfaces and robust
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responses to anomalous circumstances, many of the items it identifies are system hazarcls.
It thus can be USCCI  as a first step towards specifying and checking safety  constraints, either
informally or formally. As dcvelopccl  here, the chcclilist  can bc rcaclily  ;ncorporatec] into
the requirements analysis, e.g., as a supplement to the formal inspection of rcquirenlents
spcc; ficat;ons.

IMture work in this area will bc clircctccl  at identifying how the use of the Safety Checklist
during  the requirements phase can be used to predict which factors in a. particular system
arc likely to cause subsequent safety-relatcc] software errors.
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Appendix

‘l’able 1. !i’argcting  Safety-liclatccl Software Exors With the Safety Checklist
Checklist Item Voyager Galileo Total

1. Out-of-range values 5 11 16
2. Timeout 2 5 7
3. Input arrives when it shoulcln’~ 10 7 17

4. Deterministic o 0 0
5. Data age 1 7 8

6. Arrival rate 5 3 8
7. Lost events 5 5 10

S. Overload response 9 4 13

9. All data used o 0 0
10. Startup/OfIline/Shutdown 6 0 6
11. Degraclation  predictable 1 0 1
12. Delays in error responses G 17 23

13. Feedback loops o 0 0
14. All modes reachable o 0 0
]5. Paths lead to low-risk state 5 29 34
16. Inputs Received before start o 6 6
Tota l  Aclclressecl  by Safety Checklist:  – 5,5 g),l

— 149

-— — —..

Table 2. AP~lvin~  the Safety Checklist tO a Rwlirenlents  Speci f ica t ion  “
Checklist Item “ - “ - ‘Resolved Questions Remain Future Specification
1.. Out-of-range values

— —.-
X

2. Timeout x
3. Input arrives when it shouldn’t x
‘~. Deterministic x
5. Data age x
6. Arrival rate x
7. Lost events x
8. Overload response x
9. All data used x
10. Startup /Oflline/Shutclown x
11. Degradation predictable x
12, Delays in error responses x
13. Feedback loops x
14. All modes reachable x
15. Paths lead to low-risk state x
16, Inputs Received before start x
Totals:

—.
7 6 3 —:
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